Name:____

Score:_

- 1(8pts) (a) State the Completeness Axiom.
 - (b) Use the Completeness Axiom only to prove that every bounded sequence $\{s_n\}$ has a converging subsequence.
- 2(10pts) Prove that every Cauchy sequence converges. (Caution: Do not use the result to prove itself.)
- **3(8pts)** Let $f_n(x) = \frac{x^n}{1 + x^n}$ and $g_n(x) = \frac{x^n}{1 + x^n \ln n}$.
 - (a) Does f_n uniformly converge on $x \in [0,1]$? Justify your answer.
 - (b) Does g_n uniformly converge on $x \in [0,1]$? Justify your answer.
- **4(8pts)** Prove that every continuous function f on a bounded closed interval [a, b] obtains its maximum at a point in [a, b].
- **5(8pts)** Show that if $\sum |a_k| < \infty$, then the radius of convergence for $\sum a_k x^k$ must not be smaller than 1.
- **6(8pts)** (a) Complete the statement of Weierstrass's Approximation Theorem: For every ______ function f on a bounded closed interval [a,b], there is a sequence of ______ that ____ to f on _____.
 - (b) State the definition of derivative for a function f at a point a.
 - (c) State the Mean Value Theorem.
- **7(8pts)** Prove the Chain Rule: If f is differentiable at a and g is differentiable at f(a), then the composite function $g \circ f$ is differentiable at a and $(g \circ f)'(a) = g'(f(a))f'(a)$.
- **8(8pts)** Prove that if x_0 is a local extremum of a function f over an open interval containing x_0 and f is differentiable at x_0 , then $f'(x_0) = 0$.
- **9(8pts)** (a) Show that if f'(x) < 0 for all $x \in (a, b)$, then f is strictly decreasing.
 - (b) Show that $x < \tan x$ for all $x \in (0, \pi/2)$.
- **10(8pts)** Let f be defined on \mathbb{R} and suppose there is an $\epsilon > 0$ such that

$$|f(x) - f(y)| \le |x - y|^{1 + \epsilon}.$$

Prove that f is a constant function.

- **11(8pts)** Let $f(x) = \ln(1+x), |x| < 1$.
 - (a) Show that $f^{(n)}(x) = (-1)^{n+1}(n-1)!(1+x)^{-n}$.
 - (b) Use Taylor's Theorem (see Problem 12 below) only to show

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, \qquad |x| < 1.$$

- **12(10pts)** Do (a) or (b) but not both.
 - (a) State and PROVE Rolle's Theorem.
 - (b) Prove Taylor's Theorem: If $f^{(n)}$ exists on (a,b) with a < 0 < b for some $n \ge 1$, then for each $x \in (a,b)$ there is some y between 0 and x such that

$$R_n(x) = \frac{f^{(n)}(y)}{n!} x^n$$

where $R_n(x) = f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k$.